On the number of n-ary quasigroups of finite order
نویسندگان
چکیده
منابع مشابه
On the number of n-ary quasigroups of finite order
LetQ.n; k/ be the number of n-ary quasigroups of order k. We derive a recurrent formula forQ.n; 4/. We prove that for all n 2 and k 5 the following inequalities hold: k 3 2 n=2 k 1 2 n=2 < log2Q.n; k/ ck.k 2/ ; where ck does not depend on n. So, the upper asymptotic bound for Q.n; k/ is improved for any k 5 and the lower bound is improved for odd k 7. This research was partially supported by th...
متن کاملn-Ary Quasigroups of Order 4
We characterize the set of all n-ary quasigroups of order 4: every n-ary quasigroup of order 4 is permutably reducible or semilinear. Permutable reducibility means that an n-ary quasigroup can be represented as a composition of k-ary and (n− k +1)-ary quasigroups for some k from 2 to n−1, where the order of arguments in the representation can differ from the original order. The set of semilinea...
متن کاملOn reducibility of n-ary quasigroups
An n-ary operation Q : Σ → Σ is called an n-ary quasigroup of order |Σ| if in the equation x0 = Q(x1, . . . , xn) knowledge of any n elements of x0, . . . , xn uniquely specifies the remaining one. Q is permutably reducible if Q(x1, . . . , xn) = P ( R(xσ(1), . . . , xσ(k)), xσ(k+1), . . . , xσ(n) ) where P and R are (n− k+1)-ary and kary quasigroups, σ is a permutation, and 1 < k < n. Anm-ary ...
متن کاملOn reducibility of n-ary quasigroups, II
An n-ary operation Q : Σ → Σ is called an n-ary quasigroup of order |Σ| if in the equation x0 = Q(x1, . . . , xn) knowledge of any n elements of x0, . . . , xn uniquely specifies the remaining one. Q is permutably reducible ifQ(x1, . . . , xn) = P ` R(xσ(1), . . . , xσ(k)), xσ(k+1), . . . , xσ(n) ́ where P and R are (n − k + 1)-ary and k-ary quasigroups, σ is a permutation, and 1 < k < n. An m-a...
متن کاملOn irreducible n-ary quasigroups with reducible retracts
An n-ary operation q : Σn → Σ is called an n-ary quasigroup of order |Σ| if in x0 = q(x1, . . . , xn) knowledge of any n elements of x0, . . . , xn uniquely specifies the remaining one. An n-ary quasigroup q is permutably reducible if q(x1, . . . , xn) = p(r(xσ(1), . . . , xσ(k)), xσ(k+1), . . . , xσ(n)) where p and r are (n− k + 1)-ary and k-ary quasigroups, σ is a permutation, and 1 < k < n. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics and Applications
سال: 2011
ISSN: 1569-3929,0924-9265
DOI: 10.1515/dma.2011.035dma.2011.21.5-6.575